
Continuous and Discontinuous Galerkin Methods for a

Scalable Three-Dimensional Nonhydrostatic

Atmospheric Model: Limited-Area Mode

James F. Kelly and Francis X. Giraldo

Department of Applied Mathematics, Naval Postgraduate School, Monterey, CA

Abstract

This paper describes a unified, element based Galerkin (EBG) framework for
a three-dimensional, nonhydrostatic model for the atmosphere. In general,
EBG methods possess high-order accuracy, geometrical flexibility, excellent
dispersion properties and good scalability. Our nonhydrostatic model, based
on the compressible Euler equations, is appropriate for both limited-area
and global atmospheric simulations. Both a Continuous Galerkin (CG), or
spectral element, and discontinuous Galerkin (DG) model are considered us-
ing hexahedral elements. The formulation is suitable for both global and
limited-area atmospheric modeling, although we restrict our attention to 3D
limited-area phenomena in this study; global atmospheric simulations will be
presented in a follow-up paper. Domain decomposition and communication
algorithms utilized by both our CG and DG models are presented. The com-
munication volume and exchange algorithms for CG and DG are compared
and contrasted. Numerical verification of the model is performed using two
test cases: flow past a 3D mountain and buoyant convection of a bubble in
a neutral atmosphere; these tests indicate that both CG and DG can simu-
late the necessary physics of dry atmospheric dynamics. Scalability of both
methods is shown up to 8192 CPU cores, with near ideal scaling for DG up
to 32768 cores.

Keywords: compressible flow, Euler, Lagrange, Legendre, Navier-Stokes,
nonhydrostatic, parallelization.

Preprint submitted to Journal of Computational Physics March 9, 2012

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
09 MAR 2012 2. REPORT TYPE

3. DATES COVERED
 00-00-2012 to 00-00-2012

4. TITLE AND SUBTITLE
Continuous and Discontinuous Galerkin Methods for a Scalable
Three-Dimensional Nonhydrostatic Atmospheric Model: Limited-Area
Mode

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School,Department of Applied Mathematics,833
Dyer Road,Monterey,CA,93943

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This paper describes a unified, element based Galerkin (EBG) framework for a three-dimensional,
nonhydrostatic model for the atmosphere. In general EBG methods possess high-order accuracy,
geometrical flexibility, excellent dispersion properties and good scalability. Our nonhydrostatic model,
based on the compressible Euler equations, is appropriate for both limited-area and global atmospheric
simulations. Both a Continuous Galerkin (CG), or spectral element, and discontinuous Galerkin (DG)
model are considered using hexahedral elements. The formulation is suitable for both global and
limited-area atmospheric modeling, although we restrict our attention to 3D limited-area phenomena in
this study; global atmospheric simulations will be presented in a follow-up paper. Domain decomposition
and communication algorithms utilized by both our CG and DG models are presented. The communication
volume and exchange algorithms for CG and DG are compared and contrasted. Numerical verification of
the model is performed using two test cases: flow past a 3D mountain and buoyant convection of a bubble
in a neutral atmosphere; these tests indicate that both CG and DG can simulate the necessary physics of
dry atmospheric dynamics. Scalability of both methods is shown up to 8192 CPU cores, with near ideal
scaling for DG up to 32768 cores.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

42

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

1. Introduction

As the resolution of numerical weather prediction (NWP) models increase,
nonhydrostatic effects become relevant. Almost all current limited-area mod-
els utilize a nonhydrostatic core, while global models are currently transition-
ing from the hydrostatic to the nonhydrostatic regime. A host of challeng-
ing, non-trivial numerical problems arise when one enters the nonhydrostatic
regime: these include 1) choosing the appropriate equation set to ensure ef-
ficiency, accuracy, and conservation, 2) effectively resolving multi-scale flow
features, that may require adaptive mesh refinement (AMR), 3) developing
efficient time-integrators and/or “soundproof” [23, 30] equation sets to con-
front the fast acoustic and gravity waves, and 4) developing scalable parallel
codes for shared, distributed, and hybrid architectures based on items 1) -3).

Virtually all current nonhydrostatic NWP models are based on a com-
bination of finite-difference discretization in space and either split-explicit
or semi-implicit (i.e., implicit-explicit or IMEX) discretization in time. Ex-
amples include WRF [24] (NCAR), Lokal Modell [32] (DWD), COAMPS
[19] (US Navy), and UM [3] (UK Met Office). Although finite difference
schemes are very efficient, they may suffer from several problems, including:
dispersion error (due to low-order approximations), geometrical inflexibility,
and lack of scalability to large (e.g. tens of thousands) of processors. To
overcome some of the limitations of finite-difference approximations, several
emerging NWP models utilize finite-volume spatial discretization, such as
MPAS [39] and MCORE [40], which utilize polynomial reconstruction of the
inter-element fluxes. In order to achieve higher-order accuracy, these finite-
volume based methods utilize a larger halo, which may impede scalability at
high processor counts. Other approaches within a finite volume framework
include the Flux-Based Characteristic Semi-Lagrangian (FBCSL) method
[29], which uses the method of characteristics to enable larger time-steps
that may present an obstacle to scalability.

Alternatively, element-based Galerkin (EBG) methods have recently been
proposed for several next generation non-hydrostatic NWP models [14, 15,
31], as well as for hydrostatic models using both continuous Galerkin (CG)
[7, 6] and discontinuous Galerkin (DG) [28] formulations. We note that the
hydrostatic models are only valid for horizontal resolutions coarser than 10
km and for this reason are not viable options for mesoscale (regional) mod-
eling. EBG methods possess several desirable attributes for future NWP
nonhydrostatic models, such as high-order accuracy, geometrical flexibility,

2

whereby the solver is completely independent of the grid, excellent dispersion
properties [26] and minimal communication overhead within a parallel im-
plementation. High-order accuracy, which allows fine-scale atmospheric flow
features to be resolved, is achieved by representing the prognostic variables
via a polynomial basis function expansion within each element. Geometri-
cal flexibility, which is inherent to all EBGs (both low and high order), is
advantageous since any terrain-following coordinate may be used within the
same solver; also, both static and dynamic adaptivity may be retro-fitted to
the existing solver. Finally, in a distributed memory environment (e.g. clus-
ter), low communication overhead is critical to maintain linear scalability to
hundreds of thousands of processor cores. In our previous work, high-order
accuracy and geometrical flexibility were addressed within explicit [14] and
IMEX [15] frameworks for 2D (x-z slices) problems using a serial implemen-
tation. However, parallel implementation was not explicitly addressed. The
purpose of the present work is to extend the work begun in [14], [31], and
[15] to realistic three-dimensional (3D) domains using a parallel, MPI-based
implementation.

The present work is guided by a need for highly scalable models in
distributed memory environments. In the past five years, clock speeds of
processors have remained stagnant; to achieve increased floating-point per-
formance, chip manufacturers have developed multiple core processors that
allow many threads to execute in parallel. In tandem, high performance
computing (HPC) has evolved towards clusters with processors counts ex-
ceeding 100,000. As we approach the exaflop era, core counts are expected
to approach 1,000,000. Therefore, next-generation NWP models must be
based upon scalable numerical methods that allow arbitrarily large proces-
sor counts with minimal communication overhead. EBG methods, both CG
and DG, have proved effective in this respect in modeling massive biological
flow [17], modeling the hydrostatic atmosphere [11, 16], incompressible flows
using low-order finite elements [20], and geodynamical problems [41].

This paper presents a scalable, 3D nonhydrostatic atmospheric model
based on a unified element based Galerkin (EBG) method targeted toward
distributed memory architectures; to our knowledge, these are the first 3D
continuous Galerkin (spectral element) and discontinuous Galerkin models
for a nonhydrostatic atmosphere. We are developing a unified dynamical core
appropriate for both mesoscale and global simulations; this nonhydrostatic
unified model of the atmosphere we call NUMA. The current implementa-
tion utilizes tensor products of Lagrange polynomials in a hexahedral grid for

3

maximum computational efficiency; however, more flexible grids based on ei-
ther tetrahedra or triangular prisms may be incorporated into future versions.
The remainder of this paper is structured as follows. In Section 2, we formu-
late the nonhydrostatic compressible Euler equations (Set 2NC and 2C from
[15]), which constitute the governing equations of our dynamical core. To
ensure numerical stability, these nonhydrostatic equations are solved about a
hydrostatic base state. In Section 3, we present both the continuous and dis-
continuous Galerkin discretization, along with the explicit time-integrator,
boundary conditions, and artificial diffusion. Section 4, which forms the core
of the paper, outlines the parallelization algorithm for both the CG and DG
methods. The communication volume and memory access patterns of both
CG and DG are compared in this section. Numerical results for a 3D linear
hydrostatic mountain and a 3D rising thermal bubble are shown in Section
5 along with the results of the scalability experiments. Scalability is demon-
strated to 8192 processor cores for both the CG and DG methods, with near
ideal scaling for DG up to 32768 cores.

2. Governing Equations

We consider the fully compressible, nonhydrostatic Euler equations in
both conservative and non-conservative form. These equations (Sets 2NC and
2C), which are valid for spatial resolutions finer than 10 km, have previously
been considered in [14] for 2D limited-area atmospheric flows. Set 2NC is
considered within a continuous Galerkin (CG) framework, whereas Set 2C is
considered within a discontinuous Galerkin (DG) framework.

2.1. Non-Conservative Form (Set 2NC)

Of the five equation sets considered in [15], set 2NC proved to be both
computationally efficient and provides acceptable mass and energy conserva-
tion properties; in addition, replacing the advection operator in the momen-
tum equation allows for formal conservation of energy up to time truncation
error. Both diabatic forcing and the effects of moisture are neglected; in
other words, we consider a dry dynamical core without sub-grid scale tur-
bulence closure. In the present study, we consider three-dimensional flow
in Cartesian coordinates (x-y-z) subject to gravitational and Coriolis forces,
yielding

∂ρ

∂t
+∇ · (ρu) = 0 (1a)

4

∂u

∂t
+ u · ∇u +

1

ρ
∇P + gk̂ + f × u = 0 (1b)

∂θ

∂t
+ u · ∇θ = 0 (1c)

with the prognostic variables defined as (ρ,uT , θ), where ρ is density, u =
(u, v, w)T is velocity, and θ is potential temperature; the superscript T de-
notes the transpose operator. In addition, P is pressure, g is the gravitational
constant, f = 2Ωk̂ is the Coriolis parameter (with Ω the angular frequency
of the earth), and k̂ is the unit vector in the z direction. Eq. (1a) enforces
mass conservation, Eq. (1b) enforces conservation of momentum, and Eq.
(1c) enforces conservation of entropy. To close the system of conservation
laws given by Eq. (1), a thermodynamic equation of state is required. We
utilize the ideal gas law given by

P = PA

(

ρRθ

PA

)γ

(2)

where PA is the atmospheric pressure at ground, R = cp− cv is the ideal gas
constant, and γ ≡ cp

cv
≈ 1.4 is the ratio of specific heats. In three dimensions,

Eqs. (1) and (2) constitute a closed system of nonlinear partial differential
equations in five unknowns.

To facilitate the solution of the compressible Euler equations and maintain
numerical stability, we split the density, pressure, and potential temperatures
about their mean hydrostatic values:

ρ(x, z, y, t) = ρ0(z) + ρ′(x, y, z, t) (3a)

θ(x, y, z, t) = θ0(z) + θ′(x, y, z, t) (3b)

P (x, y, z, t) = P0(z) + P ′(x, y, z, t) (3c)

where ρ0, θ0, and P0 are the hydrostatic reference states. For all the test
cases considered in this paper, the reference states are functions of the vertical
coordinate z; however, more sophisticated test cases require reference states
that are functions of x, y, and z. Inserting Eq. (3) into Eq. (1) and applying
hydrostatic balance

dP0

dz
= −ρ0g (4)

yields the system

∂ρ′

∂t
+ u · ∇ρ′ + u · ∇ρ0 + (ρ′ + ρ0)∇ · u = 0 (5a)

5

∂u

∂t
+ u · ∇u +

1

ρ′ + ρ0
∇P ′ +

ρ′

ρ′ + ρ0
gk̂ + f × u = 0 (5b)

∂θ′

∂t
+ u · ∇θ′ + u · ∇θ0 = 0. (5c)

Defining a solution vector q = (ρ′,uT , θ′)T , Eq. (5) is written in condensed
form as

∂q

∂t
= S2NC(q) (6)

where S(q) is a nonlinear, first-order differential operator.

2.2. Conservative Form (Set 2C)

Eq. (1) may be written in flux, or conservative form

∂ρ

∂t
+∇ ·U = 0 (7a)

∂U

∂t
+∇ ·

(

U⊗U

ρ
+ P I3

)

+ ρgk̂ + f ×U = 0 (7b)

∂Θ

∂t
+∇ ·

(

ΘU

ρ

)

= 0 (7c)

complemented by the equation of state

P = PA

(

RΘ

PA

)γ

(8)

with the prognostic variables defined as (ρ,UT ,Θ)T , where ρ is density, U =
ρu is momentum, u = (u, v, w)T is velocity, and Θ = ρθ is density potential
temperature. In addition, the operator ⊗ denotes the tensor product and I3

is the rank-3 identity matrix. The variables in these equations are split in
a similar fashion to Eq. (1) except that we now split the density potential
temperature as follows

Θ(x, y, z, t) = Θ0(z) + Θ′(x, y, z, t). (9)

Applying the hydrostatic decomposition to Eq. (7) yields

∂ρ′

∂t
+∇ ·U = 0 (10a)

6

∂U

∂t
+∇ ·

(

U⊗U

ρ
+ P ′I3

)

+ ρ′gk̂ + f ×U = 0 (10b)

∂Θ′

∂t
+∇ ·

(

ΘU

ρ

)

= 0 (10c)

which is written in vector form as

∂q

∂t
+∇ · F(q) = S(q) (11)

where F(q) is the flux tensor and the gravitational and Coriolis terms are
incorporated into S(q). Finally, we can write this equation in the condensed
form as

∂q

∂t
= S2C(q). (12)

3. Numerical Methods

In this section, we briefly discuss the numerical discretization used by
NUMA which includes: the spatial discretization of Eq. (1) using a continu-
ous Galerkin (CG) method and Eq. (7) using a discontinuous Galerkin (DG)
method (Sec. 3.1); the explicit time-integrator used to evolve the solution
forward in time (Sec. 3.2); the necessary boundary conditions required for
limited-area problems (Sec. 3.3); and the artificial diffusion used to control
overshoots (Sec. 3.4).

3.1. Spatial Discretization

Let us now describe the approximation of the continuous spatial operators
using both CG and DG. We begin with a description of the decomposition
of the global spatial domain into elements, the basis functions defined within
these elements, and element-wise integrals.

3.1.1. Basis Functions, Elements, and Integrals

Element-based Galerkin methods such as the continuous Galerkin and
discontinuous Galerkin methods require the decomposition of the global do-
main Ω ⊂ R3 into Ne non-overlapping elements Ωe via

Ω =
Ne
⋃

e=1

Ωe. (13)

7

In the current formulation of NUMA, we let Ωe be hexahedra, which pro-
vides simple grid generation and efficient (fast) evaluation of the necessary
differentiation and integration operators. We note, however, that Ωe may be
replaced by tetrahedra, pyramidal elements, or triangular prisms, in a future
version of NUMA; while this can be done for both CG and DG, we envision
doing this only for the DG version since DG does not require global matrices
to be stored. CG would require the inversion of a sparse global mass matrix
which would be prohibitive in three-dimensions. We also note that tetrahe-
dral and/or pyramidal elements would produce an unstructured grid in the
vertical, which would impede the incorporation of column-based microphysics
and physical parameterizations. Finally, sum-factorization may be used with
hexahedral elements, reducing the complexity of a 3D method based on N -
th order polynomials from O (N6) to O (N4), making EBG methods one to
three orders of magnitude more efficient for typical values of 3 ≤ N ≤ 10.

Letting the unit cube (ξ, η, ζ) ∈ E = [−1, 1]3 be the reference hexahedral
element, a transformation Fe : Ωe → E mapping physical space to computa-
tional space is defined for each element, yielding (x, y, z) = Fe(ξ, η, ζ) where
the associated Jacobian of Fe is denoted by Je.

Within each element Ωe, a finite-dimensional approximation qN is formed
by expanding q(x, t) in basis functions ψj (x) such that

q
(e)
N (x, t) =

MN
∑

j=1

ψj(x)q
(e)
j (t) (14)

where MN = (N + 1)3 is the number of nodes per element, N is the order
of the basis functions, and the superscript (e) denotes element-wise (local)
values. For basis functions, we construct tensor products of Lagrange poly-
nomials given by

ψi (x) = hα(ξ)⊗ hβ(η)⊗ hγ(ζ) (15)

where hα(ξ) is the Lagrange polynomial associated with the Legendre-Gauss-
Lobatto (LGL) points ξi and (ξ, η, ζ) are functions of the physical variable
x. These LGL points satisfy

(1− ξ2)P
′

N(ξ) = 0 (16)

where PN(ξ) is the N -th order Legendre polynomial. We can now use all of
this machinery defined to construct discrete approximations of the continuous

8

spatial derivatives. For example, the derivative of q can be obtained by
differentiating Eq. (14) as follows

∇q
(e)
N x(x, t) =

MN
∑

j=1

∇ψjx(x)q
(e)
j (t) (17)

which, after multiplying by the test (basis) function ψ and integrating within
an element yields

∫

Ωe

ψi

MN
∑

j=1

∇ψjx(x)q
(e)
j (t)dΩe (18)

where we shall use Nth-degree LGL integration points. We will make use of
these definitions in order to define the CG and DG approximations.

3.1.2. Continuous Galerkin

For CG we shall use Eq. (1) as our governing equations. Using Eq. (14)
to approximate qN , multiplying by a test function and integrating as in Eq.
(18) yields the element-wise definition of the problem

∫

Ωe

ψi
∂qN

∂t
dΩe =

∫

Ωe

ψiS
2NC (qN) dΩe (19)

and applying the global assembly, or direct stiffness summation (DSS) oper-
ator required by all CG methods yields the weak formulation for CG: find
qN ∈ V

CG
N such that

∫

Ω

ψI
∂qN

∂t
dΩ =

∫

Ω

ψIS
2NC (qN) dΩ ∀ψ ∈ VCG

N (20)

where
VCG

N =
{

ψ ∈ H1(Ω) : ψ ∈ PN(I), e = 1, . . . , Ne

}

(21)

and PN denotes the space of all polynomials of degree N . Notice that the
requirement ψ ∈ H1(Ω) implies V CG

N ⊂ C0(Ω). The DSS operator
∧Ne

e=1

forms global matrices from the element (local) matrices. For example, for
the local mass matrix defined as

M
(e)
ij =

∫

Ωe

ψiψj dΩe (22)

9

the DSS operator produces the global mass matrix

MIJ =
Ne
∧

e=1

M
(e)
ij ≡

Ne
∧

e=1

∫

Ωe

ψiψj dΩe (23)

where the DSS sums the contribution of all the elements e = 1, . . . , Ne and
i = 1, . . . ,MN and stores them in the global grid points I = 1, . . . , NP as
follows (i, e) → I. Extracting the global mass matrix from Eq. (19) and
writing the operator S as a vector, results in the following compact matrix-
vector form

∂qI

∂t
= M−1

IJ S
CG
J (q) (24)

where the mass matrix MIJ =
∫

Ω
ψIψJ dΩ is diagonal because the interpola-

tion and integration points have been carefully chosen to be co-located; this
approximation is valid for N ≥ 4 while incurring a small error in integration
[13]. Denoting the right-hand side (RHS) of Eq. (24) by RI(q), Eq. (24) is
expressed as

∂qI

∂t
=

Ne
∧

e=1

R
(e)
i

(

q
(e)
i

)

. (25)

Note that the DSS operator maps local, element-wise coordinates (i, e) to
global coordinates I. Eq. (25) forms the core of the spectral element method,

allowing local, element-wise information q
(e)
i to propagate to adjacent ele-

ments via the DSS operator.

3.1.3. Discontinuous Galerkin

For DG we use Eq. (7) because the DG method requires the equations
to be in conservation form. We have also developed a CG code with Set 2C
but we use Set 2NC for CG because it represents the optimal equation set
for our needs as described in [15].

Beginning with Eq. (11), using the basis function expansion, Eq. (14),
multiplying by a test function, and integrating element-wise yields

∫

Ωe

ψi
∂q

(e)
N

∂t
dΩe +

∫

Ωe

ψi∇ · F
(e)(qN)dΩe =

∫

Ωe

ψiS
(e)(qN)dΩe. (26)

Integrating the divergence of the flux by parts yields the weak formulation

10

for DG: find q
(e)
N ∈ V

DG
N

∫

Ωe

ψi
∂q

(e)
N

∂t
dΩe +

Nfaces
∑

k=1

∫

Γe

ψin̂
(e,k) · F(e,k)(qN)dΓe −

∫

Ωe

∇ψi · F
(e)(qN)dΩe

=

∫

Ωe

ψiS
(e)(qN)dΩe ∀ψ ∈ V

DG
N (27)

where the DG finite-dimensional space is defined as

VDG
N =

{

ψ ∈ L2(Ω) : ψ ∈ PN(I), e = 1, . . . , Ne

}

. (28)

Notice that, contrary to Eq. (21), there is no global continuity requirement,
so that VDG

N 6⊂ C0(Ω). This is possible because in Eq. (27) differentiability
is required separately within each element, and not within the entire domain
Ω. The coupling between neighboring elements is then recovered through
the numerical flux (or Riemann solver) F(e,k), which is required to be a single
valued function on the inter-element boundaries and the precise definition of
which is given below.

For simplicity we use the Rusanov flux defined as

F(e,k) =
1

2

[

F(e) + F(k) − n̂(e,k)cmax

(

q(k) − q(e)
)]

(29)

where cmax is the maximum wave speed of the Euler equations (i.e., maximum
eigenvalue of the Jacobian matrix) which turns out to be cmax =| n̂ · u | +a
where a denotes the speed of sound. Note that other types of numerical
fluxes are possible including multi-dimensional Riemann solvers (e.g., [9]).
We have initially chosen this simple Rusanov flux because it vastly simplifies
the parallel strategy. Using a one-dimensional flux, as we have, reduces
the element communication to edge neighbors but restricts the maximum
allowable time-step. Conversely, using a multi-dimensional Riemann solver
will increase the maximum allowable time-step but will also increase the size
of the communication stencil. The vices and virtues of this approach need to
be studied in detail. Such a study is beyond the scope of the present work;
we leave this topic for future work.

3.2. Explicit RK methods

We implemented a strong stability preserving (SSP) Runge-Kutta third-
order, five stage time-integrator (RK35) proposed in [37]. This time-integrator

11

is stable for (acoustic) Courant numbers of 1.3 or less when using a continu-
ous Galerkin discretization, whereas for DG, the time-integrator is stable for
(acoustic) Courant numbers of 0.85 or less.

We emphasize that this explicit RK method will not be used in an op-
erational setting due to the stringent CFL requirement; rather, we are de-
veloping IMEX methods which allow much larger time-steps. Nevertheless,
this particular time integrator was chosen for the following reasons: 1) to
provide high-order accuracy in time to complement the high-order spatial
discretization, 2) to minimize the amount of numerical dissipation, 3) to al-
low a relatively larger time-step (with respect to explicit methods), and 4) to
provide stable solutions for both CG and DG methods. Criteria 1) and 2) are
necessary for resolving fine-scale flow features present in many atmospheric
phenomena, whereas criterion 3) is necessary for model efficiency, and crite-
rion 4) is required in order to facilitate the comparison of CG and DG. In
a previous study involving nonhydrostatic modeling [5], all available third-
order multi-stage methods in addition to an assortment of multi-step methods
were compared and RK35 was found to be the most efficient. In addition,
RK35, unlike leapfrog, does not have a computational mode and therefore
does not require a time filter (DG also would not work with leapfrog due to
the eigenvalues for DG not residing along the imaginary axis as they do for
CG). Note, however, that within a parallel setting, each RK stage requires
parallel communication, thus making this choice of time-integrator relatively
expensive. However, this extra expense is tolerated in order to maintain
high-order accuracy in time. It should also be mentioned that we have cho-
sen an explicit method in order to simplify and focus the discussion of CG
and DG with respect to scalability. The optimal scalability will be achieved
by an explicit method. A study on the scalability of IMEX methods requires
a discussion of a number of topics including: implicit time-integrators, the
choice of iterative solver, and specific preconditioning strategies; we leave
this for future work.

3.3. Boundary Conditions

Limited-area atmospheric models, such as mesoscale codes, typically re-
quire two types of boundary conditions: no-flux boundary conditions (NF-
BCs), that mimic impenetrable objects (e.g., the ground) and non-reflecting
boundary conditions (NRBCs), that mimic an infinite domain (e.g. the top
of the atmosphere) by allowing waves to propagate out of the computational
domain without generating spurious reflections. In this section, we outline

12

how NFBCs and NRBCs are imposed for both CG and DG. For additional
details, see [14, 15].

3.3.1. No-Flux Boundary Conditions

All of our test cases utilize NFBCs on the bottom boundary, while some
test cases (such as the rising thermal bubble) utilize NFBCs on other bound-
aries as well. For CG, we enforce

n̂ · u = 0 (30)

for all points on the boundary Γ, where n̂ is the outward pointing unit normal
vector on Γ. In order to apply the NFBC to the prognostic vector q, we
augment n̂ to R5 via n̂ = (0, n̂T , 0)T , yielding n̂ · q = 0. To apply theses
boundary conditions in the strong sense, we construct a 3 by 3 projection
matrix P via

P =

1− n2
x −nxny −nxnz

−nynx 1− n2
y −nynz

−nznx −nzny 1− n2
z

 . (31)

This matrix is constructed during the initialization phase and applied to the
RHS operator after each time-step.

On the other hand, for DG the NFBCs are imposed via the numerical flux
as follows. On boundary edges where NFBCs are to be imposed, a ghost-cell
is constructed on the other side of the wall that has a velocity vector the
negative of the interior element. In other words,

U(k) = −U(e)

where k in this case denotes the edge that is positioned on a no-flux boundary;
note that this ensures that the no-flux condition n̂ ·U is satisfied. The scalar
variables are copied directly such that ρ(k) = ρ(e), etc.

3.3.2. Non-Reflecting Boundary Conditions

In an operational mesoscale NWP model, the four lateral and the top
boundaries should mimic an open domain. That is, waves should smoothly
exit the domain without reflection; in addition, information from outside the
domain should be allowed to enter the domain of interest. Mathematically
modeling this behavior is non-trivial and has attracted the attention of re-
searchers in many disciplines [4, 18, 27]. In our model, we utilize a simple,
albeit, effective absorbing sponge layer method. The computational domain

13

is surrounded by a layer with Newtonian relaxation coefficients α(x) and
β(x) such that α = 1 and β = 0 in the domain of interest, while α→ 0 and
β → 1 as the boundary is approached. Specifically, for the top boundary, we
choose

β =

(

z − zs

zt − zs

)4

(32)

where zt is the vertical height of the domain and zs is the bottom of the sponge
layer. Similar functions are used for the lateral boundaries of the domain.
Once the sponge layer is constructed, the numerical solution q̃ given by the
RHS operator is relaxed to some known solution at the boundary qb via

q = α(x)q̃ + β(x)qb. (33)

For problems under consideration in this paper, qb is a far-field condition
(e.g. known wind velocity and zero perturbation of scalars).

3.4. Artificial Diffusion

To add a certain level of numerical dissipation we have implemented sec-
ond order artificial diffusion operators, although hyper-viscosity is also pos-
sible. For Eq. (6) we add the following right-hand-side operator

0
ν∇ · (∇u)
ν∇ · (∇θ′)

and for Eq. (12) we add the operator

0
ν∇ · (ρ∇u)
ν∇ · (ρ∇θ′)

 .

Note that the artificial diffusion operator applied to the potential tempera-
ture equation must act only on the potential temperature perturbation, θ′,
because if it is applied to the full potential temperature variable then it will
smoothen the background reference field which must remain intact in order
to maintain hydrostatic balance.

14

4. Parallel Implementations of EBG Methods

NUMA is an MPI-based code targeted toward distributed memory archi-
tectures (e.g. clusters). In this section, we discuss the parallel implementa-
tion of NUMA, including: a description of the domain-decomposition (Sec.
4.1), communication strategies for both CG and DG (Secs. 4.2 and 4.3), a
comparison of these communication volumes (Sec. 4.4), and a discussion of
memory access of these EBG methods (Sec. 4.5).

4.1. Domain Decomposition

We decompose Ω into Np processor elements (PE) Ωp that consist of local

elements Ω
(p)
e′ . Mathematically, we rewrite Eq. (13) as

Ω =

Np
⋃

p=1

N
(p)
e

⋃

e′=1

Ω
(p)
e′ (34)

where N
(p)
e is the number of local elements residing on PE p. Since the

DSS operator for CG requires global elements e and the flux integrals for
DG require global faces f , we must also construct local to global mappings
for both elements e = LGE(p)(e′) and faces f = LGF (p)(f ′) that map local
elements e′ and faces f ′ on processor p to global elements e and faces f
residing on the global domain Ω.

A guiding principle in the construction of NUMA is to maintain inde-
pendence between grid generation and the CG/DG solver; hence, domain
decomposition should be as general as possible and not be constrained by
the choice of grid. Therefore, we have implemented a domain decomposition
strategy based on the widely used METIS graph partitioning library [21].
METIS requires an adjacency graph where the Ne vertices are elements Ωe

and the “edges” denote the connectivity between elements. Since the DSS
operator requires information from elements that share nodes, the “edges”
include all forms of geometric connectivity (faces, edges, and vertices). For
maximum flexibility, we construct a weighted adjacency graph G′ = (V,E)
with adjacency matrix A′ of size Ne by Ne defined via

a′ij =

v if i and j are vertex neighbors

e if i and j are edge neighbors

1 if i and j are faces neighbors

(35)

15

where v and e are arbitrary weights. Although not explored in this paper,
the values of v and e may be chosen to construct a machine-optimal weighted
adjacency matrix. Once A′ is constructed the adjacency matrix A for the
graph G = (V, F), where F are geometrical faces, is simply aij = 1 if a′ij = 1
and aij = 0 otherwise. Two example connectivity graphs for a 2D grid
are shown in Figure 1, showing both edge and vertex connectivity. The
associated 9 by 9 adjacency matrix has nodes with degree ranging from 3 (for
the corner nodes) to 8 (for the central node). In contrast, the flux integrals
only require face adjacency information; hence, our DG code only utilizes
the standard adjacency matrix A. Also shown in Fig. 1 is the adjacency
matrix associated with DG, which only shows edge (face) adjacency. These
adjacency matrices, along with the number of processors Np are then passed
to METIS, which returns a partition P : V → {1, 2, ..., Np}, that maps global
elements to processors. This mapping is then used to construct the local to
global mappings LG necessary for global assembly in Eq. (25).

In addition to the element adjacency graph G, a processor-element adja-
cency graph GP = (VP , EP) is constructed, where the vertices VP are pro-
cessor elements and the edges EP are the connectivity between processor
elements. For a CG method, EP includes vertex, edge, and face connec-
tions between processor elements. The NP by NP adjacency matrix A(P)

associated with GP is derived from A′ as follows: the element a
(P)
ij = 1 if

the intersection of all rows i′ and columns j′ of A′ such that i = P(i′) and

j = P(j′) has at least one nonzero element; otherwise, a
(P)
ij = 0. From the

inter-processor adjacency matrix A(P), the necessary communication data
structures are constructed. Specifically, the neighbors of processor element i
are simply the non-zero columns of row i, while the number of neighbors for
element i is given by

∑NP

j=1 a
(P)
ij . Thus, a low-communication partition will

have an adjacency matrix A(P) that is as sparse as possible.

4.2. Parallelization: CG

We first consider the parallelization of CG. The global DSS operator in
Eq. (25) requires inter-processor communication due to the C0 requirement
of elements at processor element boundaries. A global DSS is required in two
parts of the code: construction of the mass matrix and construction of the
right-hand side (RHS). To perform this communication, we first construct the
boundary nodes of each processor (excluding the physical boundary where
BCs are applied). Denote the boundary of processor element i by ∂Ωi. In

16

(a) EBG Grid

1

7 8 9

4

5

6

32

(b) Generalized Adjacency
Graph (CG)

1 2 3

4
5

6

7 8 9

(c) Adjacency Graph
(DG)

Figure 1: Example 2D grid (left), the CG associated adjacency graph (center), and DG
adjacency graph (right). Since CG methods utilize nodal communication, the generalized
adjacency graph includes both edge and vertex connectivity, with a maximum degree of
eight. For 3D, structured, Cartesian grids, the maximum degree is 26. In contrast, typical
DG methods utilize face-based communication and hence only require the adjacency graph
shown in the right panel. For 3D Cartesian grids the maximum degree for DG is only 6.

order to communicate between processor elements, we construct two data
structures send and recv. Consider a particular processor i and neighboring
processor j. send contains the local nodes on processor i that are sent to each
neighboring processor j, while recv contains the local nodes on processor j
that must be sent to i. In order to construct send, we utilize the method
shown in Algorithm 1. The corresponding recv structure contains the same
grid points as send, although they may be ordered differently.

Algorithm 1 Construction of MPI send/receive communication data struc-
tures for both CG and DG.

for all NBHs j of i do

MPISEND ∂ΩG
i ← LGE(i) (∂Ωi) to proc j

MPIRECV ∂ΩG
j ← LGE(j) (∂Ωj) to proc i

B ← ∂ΩG
i ∩ ∂Ω

G
j

send(j)←
[

LGE(i)
]−1

(B)
end for

Once these data structures have been constructed, the global mass matrix
and RHS operators may be constructed via a two step process. The global

17

mass matrix MIJ and RHS operator in Eq. (25) are decomposed as

MIJ =
Ne
∧

e=1

M
(e)
ij =

Np
∧

np=1

N
(p)
e

∧

e′=1

M
(e′)
ij and (36a)

RI =
Ne
∧

e=1

R
(e)
i =

Np
∧

np=1

N
(p)
e

∧

e′=1

R
(e′)
i . (36b)

Hence, the global DSS is decomposed into a local, on-processor DSS and a
global DSS, that requires inter-processor communication. In this way, global
continuity between elements is preserved during the construction of each
RHS. Note that the communication stencil is simply the boundary of each
processor element ∂Ω(i) and is independent of the polynomial order N ; that
is, unlike higher-order finite difference or finite volume methods, the spectral-
element method is halo-free. We note however, that the message size grows
with the surface area of the processor element, or N2. In summary, the global
DSS procedure may be summarized as follows: The global DSS operation is

Algorithm 2 The Direct Stiffness Summation (DSS) Operation in CG

1. Perform a local DSS on processor i.
2. Exchange boundary points between processors i and all processor neigh-
bors j using (isynchronous) isend and irecv.
3. Perform a global DSS using the boundary data received from neighbors
j.

represented schematically in the left panel of Figure 2 in a 2D setting. To
simplify the discussion, each processor is assumed to own one element. In
order to construct the RHS operator on the boundary (red dots), the ele-
ment E (green) requires nodal information for its 8 nodal neighbors. These
neighbors include both edge neighbors (2, 4, 6, and 8) and vertex neighbors
(1, 3, 5, and 7). In a 3D setting, a hexahedral element may have (a maxi-
mum) of 6 face neighbors, 12 edge neighbors, and 8 vertex neighbors, for a
total of 26 nodal neighbors. Note that for tetrahedral grids, the number of
vertex neighbors may be much greater. To reduce this communication cost,
METIS is used to reduce the total number of vertex neighbors; in a typical
3D partition, a processor element lying away from a physical boundary has
16 or fewer nodal neighbors; hence, the METIS-based decomposition further

18

(a) CG stencil (b) DG stencil

Figure 2: Computational stencils for a) CG and b) DG in a 2D setting, where each
processor element owns one element. In the left panel, the element E (green) requires
nodal information for its 8 nodal neighbors in order to construct the DSS operator on
the boundary (red dots). In the right panel, the same element E only requires nodal
information for its 4 face neighbors in order to construct flux integrals. In both methods,
the interior nodes (yellow dots) do not need to be communicated to adjacent processors,
resulting in a halo-free algorithm.

reduces communication cost relative to a naive geometric domain decompo-
sition. In particular, we use the routine METIS_PartGraphRecursive,which
reduces the edge-cut of the graph G.

EBG methods possess purely local communication stencils. Referring
to the left panel of Fig. 2, the interior nodes (yellow dots) do not need to
be communicated to adjacent processors, resulting in a halo-free algorithm.
Thus unlike high-order finite difference and finite volume schemes, spectral
elements may achieve spectral accuracy without sacrificing their local char-
acter.

4.3. Parallelization: DG

Parallelization of DG is much more straightforward than CG. Since there
are no global mass matrices, all that is required is a way to communicate
boundary data between processor elements. In addition to a local/global
element-mapping, an additional local/global face structure is also required.
Faces on each processor element (excluding boundary faces) are classified
into two types: intra-processor and inter-processor. The necessary send and

19

receive data structures are then constructed by calculating the intersection
of face boundaries on each PE as described in a manner similar to Algorithm
1. Unlike CG, however, the DG algorithm requires only the set of faces f
which need to be sent to adjacent processors and not the actual grid points.
Once these maps and data structures are constructed, the flux operators are
evaluated using the following algorithm, which employs interleaved compu-
tation/communication:

Algorithm 3 Interleaved Computation of the Flux Operator in DG

1. Send/Receive boundary data via non-blocking MPI Send/Receive.
While waiting for boundary data do:
2. Compute volume integrals.
3. Compute intra-processor flux integrals.
4. MPI_Wait()
5. Compute inter-processor flux integrals.
6. Multiply by element-wise inverse mass matrix.

The communication stencil is illustrated geometrically in the right panel
of Figure 2. Like CG, DG algorithms do not require internal nodes to be
communicated to adjacent processors and is hence halo-less. Moreover, since
all communication is based on fluxes, only elements which share adjacent
faces need to communicate. This compact stencil has a crucial impact on
both the communication volume and memory access patterns of DG when
compared to CG. These issues are explored in the next two sections.

We note that the focus of this study is a comparison of CG and DG from
an algorithmic point of view and that the parallelization algorithms outlined
in this and the previous section are not optimal. In particular, we have not
implemented sophisticated scheduling between the individual MPI processes
using MPI_Waitany or Mpi_Waitsome , nor have we exploited topology aware
communication. We are currently addressing these implementation details in
our codes. Therefore, it must be understood that both methods can indeed
be further optimized; however, the results we present represent the simplest
approaches for constructing parallel strategies.

4.4. Communication Volume

A simple model [8] for the communication time (or cost) of a single MPI
process is

tc = ta(α + βm) (37)

20

where ta is the time to do a floating-point operation, α is proportional to the
latency (i.e., message startup cost), and β is the asymptotic transfer rate (i.e.,
inverse bandwidth). Typically, the latency cost α is larger than bandwidth
cost β by one to three orders of magnitude, depending on the architecture of
the machine. To characterize the trade-off between bandwidth and latency,
the ratio β/α provides a useful metric; a typical value is β/α = 0.01. Using
the model given by Eq. (37) the communication overhead of both DG and
CG may be quantitatively analyzed.

Consider a hexahedral processor element (PE) with Ne elements dis-
cretized with order N polynomials. Geometrically, we state that the length
of a face, edge, and vertex message is

mf = nvarN
2/3
e (N + 1)2 (38a)

me = nvarN
1/3
e (N + 1) (38b)

mv = nvar (38c)

where nvar = 5 is the number of state variables.
For DG, since the inter-processor fluxes only require face communication,

and since each PE has an average of six face neighbors, the total communi-
cation cost at each stage of the RK time-integrator is

CDG = taα

(

6 + 6
β

α
nvarN

2/3
e (N + 1)2

)

. (39)

Asymptotically, we see that the communication cost scales as O
(

N
2/3
e N2

)

.

In contrast, the computation volume, which is dominated by the construction
of volume integrals, scales as O (NeN

4); hence, for large N and/or large Ne,

the ratio of communication to computation O
(

N
−1/3
e N−2

)

tends to zero,

thereby ensuring weak scaling.
In contrast, for CG the construction of the DSS operator requires edge

and vertex communications in addition to face communication. Since for a
hexahedral PE, there are 12 edges and 8 vertices, the communication cost is

CCG = 6ta (α + βmf) + 12ta (α + βme) + 8ta (α + βmv)

= taα

(

26 + 6
β

α
nvarN

2/3
e (N + 1)2 + 8

β

α
nvarN

1/3
e (N + 1) + 8

β

α
nvar

)

.

(40)

21

As with DG, the communication cost scales as O
(

N
2/3
e N2

)

with a similar

estimate for computation; hence, in an asymptotic sense, both CG and DG
have the same communication footprints. Geometrically, this can be under-
stood since the surface area of the faces of a PE grow faster than the sizes of
edges and vertices. These asymptotic estimates are not significant for prac-
tical choices of N and Ne, e.g., for 4 ≤ N ≤ 16 and small values of Ne the
intermediate behavior of Eqs. (39) and (40) become quite important. We note
briefly that the communication footprint of CG methods may be reduced to a
footprint similar to DG using the d-directional exchange algorithm proposed
in [10]; however, implementation of this algorithm is non-trivial and limited
to tensor product meshes, and is therefore not explored in this study.

A typical ratio of bandwidth to latency on modern computers is β/α =
0.01. Consider the case of one element per MPI process, Ne = 1, and N = 4.
Then CCG/CDG ≈ 2.6. Hence, CG has a significant communication overhead
relative to DG in practice. To understand this communication overhead more
extensively, the ratio of Eqs. (40) and (39) is plotted in Figure 3 for three
different values of β/α and a range of polynomial orders N . Several trends
are evident from this graph. Firstly, for all bandwidth/latency ratios, the
communication overhead is greatest for linear (N = 1) polynomials and de-
creases monotonically to one as N → ∞. This behavior is expected from
the asymptotic estimates made above. However, from a practical point of
view, the machine architecture and MPI implementation, which is charac-
terized by the ratio β/α, determines the relative communication footprint of
CG to DG. As the latency costs increase relative to bandwidth costs (β/α
decreases), CG incurs greater communication relative to DG. Since the gen-
eral trend in HPC is toward greater bandwidth (1/β is large therefore β is
small) and greater latency (large α), then DG is expected to significantly
outperform CG in terms of communication footprint as β/α decreases.

Note that for both CG and DG, the communication volume isO
(

N
2/3
e N2

)

while the computation volume is O (NeN
4). Hence, for large number of ele-

ments and (relatively) large orders N , the computation volume overwhelms
the communication volume. Therefore, in the DG algorithm described in
Algorithm 3, steps 2 and 3 typically require much more time than the com-
munication in step 1. For this reason, DG is expected to scale to massive
numbers of cores in a distributed memory architecture.

22

2 4 6 8 10 12 14 16
1

1.5

2

2.5

3

3.5

4

4.5

5

order p

ra
tio

 c
om

m
un

ic
at

io
n

co
st

β/α = 0.001
β/α = 0.01
β/α = 0.1

Figure 3: The Ratio of communication costs CCG/CDG plotted for transfer rate/latency
ratios β/α = 0.1, 0.01 and 0.001 for polynomial orders N = 1 to 16.

4.5. Memory Access

Fetching data from memory poses a serious bottleneck in any HPC ap-
plication. The latency associated with reading data from main memory can
adversely affect the efficiency and scaling of any HPC application. In general,
EBG methods exhibit a high level of data locality since the computational
work is organized into discrete elements. In this section, we explore the im-
pact of data layout and access in CG and DG and how this data access affects
performance.

Figure 4 shows the grid numbering used by a) CG and b) DG for Ne = 4
and N = 3. Let us assume for the moment that CG uses a global indexing
while DG must use a local indexing. This data layout has an impact on the
amount of data that must be fetched from memory and stored in fast cache
for an EBG. In DG, the construction of volume integrals is element-local.
Since the data for each element lies in a contiguous region of memory, all
of the data for each element may be fetched from slow memory loaded into
fast cache at the beginning of an element-wise operation. The only operation
that requires access to a neighboring element’s data is the construction of
flux integrals. Hence, during the construction of a RHS, the number of cache
misses is small.

For CG, the state vector is typically stored in a continuous block of mem-
ory, rather than in an element-wise fashion (it is possible to use DG storage

23

in CG but here we discuss only the standard finite element numbering). Ob-
viously, this data layout uses less memory than the element-wise DG layout;
however, a penalty in performance may be incurred. To construct a RHS,
first data must be fetched from the global state vector and stored in a lo-
cal array. Cache misses may occur at all points on the boundary of the
element, especially for large grids, where there is a large stride in index-
ing. Element-wise operations are then performed, followed by DSS, which
requires updating the global state vector, thus resulting in additional cache
misses. These cache misses are exacerbated in 3D, where a typical element
requires data from 26 adjacent elements. Although these cache misses may
be partially alleviated by grid renumbering, a CG method can never achieve
the natural data locality of a DG method. Even if CG uses DG storage, the
cache misses associated with the DSS operator cannot be circumvented; the
DSS operator requires indirect memory access that requires striding through
the memory in order to enforce C0 continuity.

For optimal performance, the entire on-processor problem should fit in
cache. In this situation, which only occurs for small test problems and/or
large processor counts, no cache misses will happen. A rough estimate for the
size of the on-processor problem is made for both DG and CG. To construct
a RHS requires the following data structures: 1) a state vector, 2) reference
vector, 3) RHS vector, 4) the inverse mass “matrix”, and 5) nine metric
terms and two Jacobian matrices (for both volume and flux integrals). The
data structures in items 1)-3) each have size nvarNe(N + 1)3 with nvar = 5,
whereas structures 4) and 5) have size Ne(N + 1)3, thus yielding 26Ne(N +
1)3 real numbers. A typical 64-bit machine uses 8 bytes to store a real,
yielding a problem size of 208Ne(N+1)3. The memory requirements for CG is
slightly smaller, since data is stored using a global, rather than element-based
index; however the magnitude is similar. On typical clusters (e.g., TACC’s
Ranger), each core (and hence each MPI process) has a cache with size 512
KB, implying that a single element can fit into cache provided N ≤ 12. Using
this estimate, approximately 20 continuous elements fit into cache for N = 4,
while about 3 elements fit into cache for N = 8.

From these estimates, the number of cache misses for both CG and DG
may be estimated. For DG, the number of cache misses may vary from 0 to 6.
For a very large problem or a small number of MPI processes, a cache miss will
occur during each flux construction, when data from an adjacent processor
is accessed, yielding 6 misses. For intermediate sizes, a cache miss does
not occur when fetching data from an element with continuous numbering,

24

(a) CG Grid (b) DG Grid

Figure 4: Grid numbering for a) CG with global indexing and b) DG with local indexing
for Ne = 4 and N = 3.

yielding 2 or 4 misses; finally, for very small problems, all the data is in cache,
yielding no misses. For CG, the number of misses ranges from 0 to 52. For
large problems, reading and writing any data from an adjacent element will
incur a cache miss, yielding 2*26 = 52 misses. For smaller problems, this
count may be reduced to 48 or fewer misses, depending on the configuration
of the sub-domain. Excluding sub-domains small enough to fit into cache,
the number of cache misses associated with CG will be many times larger
than the misses associated with DG.

5. Results

5.1. Test Cases

Although a standard set of 2D mesoscale test cases has been proposed
[33] and later used within an element-based Galerkin framework [14], an
analogous suite of 3D test cases has not yet been developed. Fortunately, a
3D dynamical core can be run in 2D mode by imposing symmetry in the y-
dimension and periodic boundary conditions in the y-lateral boundaries. For
initial verification of NUMA, we used the test cases proposed in [33]; later,
we ran full 3D test cases with no y-symmetry. In the following analysis, we

25

consider two test cases: a 3D linear hydrostatic mountain and a 3D rising
thermal bubble.

5.1.1. 3D Linear Hydrostatic Mountain

To test the 3D capabilities of NUMA and the NRBCs, we consider strat-
ified flow past an isolated mountain as outlined in [34]. An initial horizontal
flow U = 20 m/s goes past a mountain with orography given by

h(x, y) =
h0

(x2/a2 + y2/a2 + 1)3/2
(41)

with mountain half-width a = 10 km and height h0 = 1 m. The hydro-
static background is specified by a constant Brunt-Väisälä frequency Nbv =
g/

√

cpT0 with ground temperature T0 = 250 K. In other words, we con-
sider an isothermal atmosphere. No flux boundary conditions are imposed
on the bottom of the domain, while NRBCs are imposed on the four lateral
boundaries and the top boundary. In order to verify our numerical results,
several analytical results from [34] and [35] are used. First, a contour inte-
gral solution for the density perturbations ρ′ valid under a linear Boussinesq
approximation is utilized. Also, the velocity perturbations parallel and per-
pendicular to the flow (u′ and v′) are known for observation points near the
ground (z = 0) (see Eqs. (39) and (41) in [34]):

u′(x, y, 0) = hNbv
x/a

1 + x2/a2 + y2/a2
(42a)

v′(x, y, 0) = hNbv
y/a

1 + x2/a2 + y2/a2
(42b)

under the same approximation.

5.1.2. 3D Rising Thermal Bubble

We consider a 3D buoyant thermal bubble rising in a neutrally stratified
atmosphere [38], which is the 3D extension of the 2D thermal bubble origi-
nally considered in [36]. The hydrostatic potential temperature θ0(z) = 300
K (neutral atmosphere) is perturbed with a sphere of radius rc = 250 m
centered at (xc, yc, zc) = (500, 500, 260) m by a cosine taper given by

θ′ = A

[

1 + cos

(

πr

rc

)]

(43)

26

x (m)

z
(m

)

0.8 1 1.2 1.4 1.6

x 10
5

2000

4000

6000

8000

10000

12000

(a)

−2 0 2 4 6

x 10
−5

0

2000

4000

6000

8000

10000

12000

ρ‘ (kg/m3)

z
(m

)

CG
DG
Analytical

(b)

Figure 5: Comparison of the density perturbations ρ’ for the isolated linear hydrostatic
mountain using 1) NUMA (solid line) and 2) a contour integral solution (dashed line) [35].
In panel a), the ρ’ contours in the plane y = 120000 m are shown (the analytical model
are solid while the CG model are dashed - the DG results are similar to those for CG and
are not shown). In panel b), ρ’ is shown as a function of z using x = y = 120000 m using
numerical results produced by the CG and DG models, and Smith’s analytical model.

where r = ‖x−xc‖2 where ‖·‖2 denotes the 2-norm, and A = 1
2

is a constant.
Unlike the test case used in [38], our problem has a C1 initial condition, thus
mitigating unphysical oscillations at the interface of the bubble. The domain
is defined as (x, y, z) ∈ [0, 1000]3 m. No-flux boundary conditions are applied
on all six boundaries.

5.2. Numerical Verification

The numerical verification proceeds in three steps. In phase one, we ran
the code in pseudo-2D mode using 1 element and periodic boundary condi-
tions in the y-direction. The numerical results for the standard mesoscale
suite [33] are directly compared to the results of our existing 2D model [14].
In phase two, we considered the linear isolated mountain problem, which pos-
sesses an approximate analytical solution in the form of a contour integral.
In phase three, we consider a three-dimensional buoyant convection problem.
Although this problem does not have an analytic solution, its qualitative be-
havior is well understood.

27

80 100 120 140 160
−0.01

−0.005

0

0.005

0.01

 x (km)

u‘
 (

m
/s

)

CG
DG
analytical

(a) down-stream velocity

80 100 120 140 160
−0.01

−0.005

0

0.005

0.01

 y (km)

v‘
 (

m
/s

)

CG
DG
analytical

(b) cross-stream velocity

Figure 6: Comparison of the a) down-stream velocity perturbation u′ and b) cross-stream
velocity perturbation v′ for the isolated mountain at ground level. Agreement between the
CG and DG models and the analytical formulas given by Eq. (42) is satisfactory, especially
for the cross-stream velocity perturbation.

5.2.1. 3D Linear Hydrostatic Mountain

In order to test the 3D operators, orography, and non-reflecting boundary
conditions, flow over a 3D isolated linear hydrostatic mountain was consid-
ered. This problem may be solved under the linear Boussinesq approximation
via a contour integral technique as described in [35]. In addition, closed form
expressions for both the down-stream and cross-stream velocity components
may be used to judge the numerical solution but only in a qualitative sense.
We used 20 elements in the x and y dimensions and 10 in the z direction with
eighth-order polynomials yielding effective resolutions of ∆x = ∆y = 1.5 km
and ∆z = 300 m. The explicit time-integrator was run at the maximum
allowable time-step for each method.

Figure 5 compares the density perturbations ρ’ of the analytic and numer-
ical solutions. In panel a), contours for ρ’ (analytic are solid while NUMA-CG
are dashed) are shown after 5 hours of simulation time and compared to the
contour integral solution; after 5 hours the models have converged to steady-
state. The results of NUMA-DG are similar to the dashed contours in Fig. 5a.
Panel b) of this figure compares the numerical results produced by NUMA-
CG, NUMA-DG, and Smith’s analytical model along the line x = y = 120
000 m. Agreement is very good near the mountain, while the two solutions

28

begin to deviate as z increases due to the influence of the sponge. Agreement
between NUMA and Smith’s results may be brought into closer agreement
by increasing the resolution of the model; at least this is the case in the 2D
analog of the problem (see [14] and [15]); recall that the “analytic” solution
used here is for a Boussinesq model and therefore one should not expect to
get exact agreement. Additional verification was performed by comparing
the velocity on the surface of the mountain. The down-stream velocity per-
turbation u′ and cross-stream velocity perturbation v′ at the ground for both
the CG and DG models are compared with the analytical formulas in Eq.
(42). Figure 6 displays the results of this comparison after t = 5 hours of
integration. Agreement between the CG and DG models and the analyti-
cal formulas given by Eq. (42) is satisfactory, especially for the cross-stream
velocity perturbation. We attribute the slight deviation of the down-stream
velocity to the sponge layer in the model, which drives the total down-stream
velocity to a constant velocity of 20 m/s at the boundary of the computa-
tional domain. This additional forcing term affects the quality of the solution
near the sponge layer. In fact, for this particular case, the NRBCs dominate
the solution; this exact same behavior was seen in the 2D mountain cases in
the NUMA2D codes presented in [14].

5.2.2. 3D Rising Thermal Bubble

Finally, the results of the buoyant convection experiment are shown in
Figures 7 and 8. Numerical results using both NUMA-CG and NUMA-DG
are shown. A total of 103 elements with N = 8 polynomials were used,
yielding an effective resolution of 12.5m. Due to the coarse resolution of
this run, a small amount of artificial diffusion ν = 0.5 m2/s was used to
suppress grid noise. In the CG code, a time-step of ∆t = 0.01 s was used,
whereas the DG code required ∆t = 0.005. A smooth potential temperature
perturbation in an initially neutral atmosphere generates vertical updrafts
and shear velocities, which cause the bubble to rise, deform, and transition
to turbulence. Fig. 7 displays x-z cross-sections of the potential temperature
perturbation for t = 0, 200, and 400 seconds, while Fig. 8 displays a 1D
cross-section along the line x = y = 500 m for both CG and DG. Note
that the CG result displays significant Gibbs oscillations, while the Gibbs
oscillations are less pronounced in the DG code; this behavior is expected,
since DG is known to capture sharp gradients more effectively. The rising
thermal bubble problem tests the models’ ability to capture the effects of
turbulence and turbulent convection. Although no analytical solution exists

29

(a) t = 0 s (DG) (b) t = 0 s (CG)

(c) t = 200 s (DG) (d) t = 200 s (CG)

(e) t = 400 s (DG) (f) t = 400 s (CG)

Figure 7: Evolution of a 3D rising thermal bubble problem (x − z-slices of the potential
temperature perturbation θ′) in the y = 500 m plane for t = 0, 200, and 400 seconds using
both NUMA-CG and NUMA-DG. A grid consisting of Ne = 103 elements with N = 8
polynomials was used.

30

0 200 400 600 800 1000
−0.1

0

0.1

0.2

0.3

0.4

z (km)

θ‘
 (

K
)

CG
DG

Figure 8: Numerical results for rising thermal bubble problem along the line x = y = 500
m using both NUMA-CG and NUMA-DG.

for this problem, the numerical results are physically plausible and resemble
previous 3D bubble experiments in [38] and [1]. Similar results are seen for
both the NUMA-CG and NUMA-DG codes.

For this test case, the relative conservation of both mass (M) and energy
(E) were calculated for both the CG and DG codes. In both codesM ≈ 10−13

and E ≈ 10−7. In other words, both CG and DG conserve mass to a level
approaching machine precision, whereas energy, which is not a conservation
variable in either model, is not conserved. Hence, there is no particular
disadvantages to using a non-conservative form of the equations within the
CG model.

5.3. Parallel Performance

Optimized versions of both NUMA-CG and NUMA-DG have been de-
ployed on TACC’s Ranger Sun Constellation cluster [2]. It is important to
understand that there may exist more optimal parallel implementations and
so our results are illustrative of two very specific choices for constructing
parallel algorithms (as described in Sec. 4). However, the specific choices we
have made in our parallel implementation are either standard or simple in

31

that they represent the most obvious ways of optimizing both the CG and
DG methods.

Two test problems using the rising thermal bubble were executed using
a fixed grid comprised of 323 = 32768 elements with both N = 4 and N = 8
polynomials. The N = 4 simulation has an effective resolution of 7.8 km in
both the horizontal and vertical, while for N = 8 the effective resolution is
3.9 km. The maximum allowable stable time step was used for both the CG
and DG models (note that the CG model uses a time-step twice as large as
DG and the N = 4 simulations allow a time-step twice as large as those for
N = 8). Due to limitations on the available computational resources, only
one run at each processor count was feasible. Also, due to the size of this
problem, running the code in serial was not feasible; therefore, the wallclock
time for each code at 16 cores was assumed to be 16 times the serial wallclock
time.

5.3.1. Results for 4th and 8th Order Polynomials

Figure 9 displays both a) the wallclock time and b) speedup for the CG
and DG codes using N = 4. In panel b), the ideal speedup (perfect scalabil-
ity) is also shown. Both codes exhibit nearly perfect linear scaling to 2048
cores. Beyond 2048 cores, however, the scaling of the CG code begins to
degrade while the DG code continues to scale ideally up to 8192 cores. At
16384 cores, the DG code scalability plateaus. Let us now see what happens
when we increase the polynomial order.

Figure 10 displays the same data for N = 8. Both the CG and DG codes
exhibit nearly perfect linear scaling to 512 cores. Between 512 to 2048 the
CG code loses perfect scaling but recovers beyond 2048 cores. Note that
the DG code exhibits perfect linear scaling all the way through to 32768
processors which is the maximum number of processors that a 323 element
simulation can use (at this point, each processor contains only one element).

5.3.2. Communication Cost

The difference in the scaling behavior between the two codes can be ex-
plained by examining the relative communication footprints of both CG and
DG. In 3D, each CG processor element (PE) may have up to 26 neighbors,
whereas DG has only 6; hence, NUMA-DG’s communication footprint is
more than 4 times as compact as NUMA-CG. In addition, DG has a more
local memory access, since DG stores data on an element-by-element basis.

32

Hence, only the flux computations require non-local memory fetches; in con-
trast, CG utilizes a global index, and requires many more non-local memory
accesses although this overhead can be eliminated if DG-type local indexing
is used.

Effect of Polynomial Order. Comparing Figs. 9 and 10, we also see the depen-
dence of scalability on the order of the method. The number of grid points for
a high-order EBG method is O (NeN

3), whereas the computation volume is
O (NeN

4); hence, the computation density is O (N). In contrast, the commu-

nication volume, as described in Sec. 4.4, grows only as O
(

N
2/3
e N2

)

. Hence,

as we increase the order N , the computation density grows as N whereas the
communication density (ratio of communication volume to the number of
grid points) decreases as 1/N . From a computer architecture viewpoint, the
data locality for both CG and DG increases with order, which is advantageous
for both distributed memory implementation as well as shared-memory im-
plementations using graphical processor units (GPUs) [25]. A higher-order
method, while more expensive at low processor counts, becomes more effi-
cient as the processor count increases.

For example, at 16 MPI processes, the DG code requires 650 seconds
of wallclock time at N = 4 and 15000 seconds at N = 8 (both using 323

elements), yielding a ratio of 23.7 for the wallclock times, i.e.,

R16 ≡

(

WTN=8

WTN=4

)

NPROC=16

= 23.7

where WT is the wallclock time. In contrast, at 8192 MPI processes, the
same code requires 1.5 seconds at N = 4 and 25 seconds at N = 8, for
a ratio of R8192 = 16.6; therefore going from 16 to 8192 has decreased the
computational cost ratio between the 4th and 8th order simulations. We
attribute this phenomena to the low communication volume and increased
data locality (e.g., greater on-processor work per grid point) which is achieved
by DG as order N increases. Of course, the same arguments holds for CG
although the curves are not as straight as they are for DG.

Note that for a fixed number of elements (in this case 323 elements) and
increasing the polynomial order from N = 4 to N = 8 increases the size
of the problem by a factor of 32: the number of grid points has increased
by a factor of 8 and the number of time-steps by a factor of 4. Although
the N = 8 simulation is 32 times larger than the N = 4 simulation, the

33

additional cost of increasing the order N decreases as we move to larger core
counts. For example, the minimum wallclock time in Fig. 9 for N = 4 is
1.5 seconds (corresponding to 8192 processors) while the minimum wallclock
time in Fig. 10 for N = 8 is 7 seconds (corresponding to 32768 processors).
In this case, we see that the cost ratio between 8th and 4th order is now 4.7.

Complexity Analysis: A Geometrical View. One other way of interpreting the
results in Figs. 9 and 10 involves quantifying the operation count that takes
place on-processor versus the size of the message that has to be communicated
across processors. Geometrically, this can be viewed as the ratio between
the computational volume (volume of the PE) and communication footprint
(surface area of the PE). To simplify the following discussion let us first define
the computational volume on a specific hexahedral processor element (PE)
as

VPE = O
(

Nenvar(N + 1)4
)

while the surface area of this HPE that defines the communication cost is

SPE = O
(

N2/3
e nvar(N + 1)2

)

where Ne denotes the number of elements per PE, nvar are the number of
variables in our equations (nvar = 5 in our case), and N denotes the order
of the polynomial; these relations come from Eq. (38). Note that the term

N
2/3
e represents the number of faces of a PE (i.e., the convex hull of the PE).

Using these two relations, we can now define the ratio

RN
PE ≡

VPE

SPE
= O

(

Ne[PE]1/3(N + 1)2
)

where Ne[PE] denotes that (for a fixed grid) the number of elements per
processor Ne is a function of the number of processors used (PE); this ratio
we now use to compare Figs. 9 and 10.

Figure 9 shows that for N = 4 both CG and DG lose perfect scalability
between 8192 and 16384 processors. Using a grid with 323 total elements
we can determine that 8192 processors gives Ne = 4 and for 16384 proces-
sors yields Ne = 2. From these values we determine that R4

8192 = 39 and
R4

16384 = 31. In contrast for N = 8, R8
8192 = 127 and R8

16384 = 101 and
scalability is maintained (Fig. 10). This tells us that for the entire range
of possible number of processors, for N = 8, the ratio of the on-processor

34

work to inter-processor communication is ≥ 100 which means that the com-
munication is overwhelmed by the computation and we therefore see perfect
scalability. The N = 4 results tells us that a factor of 40 or less is not suffi-
cient to maintain scalability. Looking again at Fig. 9 we see that for N = 4
we maintain perfect linear scalability for both CG and DG at 2048 or fewer
processors. For these values we determine that R4

2048 = 62 so we can conjec-
ture that the factor of on-processor work to inter-processor communication
can be as low as 62 while still maintaining scalability.

5.3.3. Memory Access

The previous discussion has focused on the effects of load-balancing and
communication on scaling. However, memory access must also be considered
in order to achieve maximum parallel efficiency. In particular, we wish to fit
the local problem into the fast cache on each compute core in order to mini-
mize the number of fetches from random access memory (RAM), since each
fetch may consume hundreds of clock cycles. To determine the core count at
which the local problem fits into cache, consider that the approximate size
of each state-vector for the global problem (in bytes) for DG, which uses an
element-local storage scheme, is approximately 8nvarN

g
e (N + 1)3, where the

coefficient 8 is the size of a real number and Ng
e is the global number of ele-

ments. Since we need to store both the state-vector and a RHS, the total size
of the global problem for N = 8, Ng

e = 323 and nvar = 5 is approximately 2
GB. The size of the global problem for CG is slightly smaller due to a global
storage scheme, although the difference is small for high polynomial orders.
Each quad-core processor on Ranger has 6 MB of shared L3 cache and each
core has 512 KB of dedicated L2 cache. Hence the total cache per core on
Ranger is 2 MB. Assuming good load balancing, the local problem will fit into
cache using 1000 cores. Performing the same calculation for N = 4, we see
the local problem will fit into cache using approximately 160 cores. There-
fore, we expect to see a super-linear speedup at these core counts, which is
evident in Figs. 9 and 10 (see panels b) where the CG and DG simulations
exceed the ideal scaling curve).

35

16 64 256 1024 4096 16384 65536
10

0

10
1

10
2

10
3

10
4

10
5

Number of Processors

W
al

lc
lo

ck
 T

im
e

(s
)

CG
DG

(a) wallclock time

16 64 256 1024 4096 16384
16

64

256

1024

4096

16384

Number of Processors

S
pe

ed
up

CG
DG
Ideal

(b) speedup

Figure 9: Scaling study performed using the NUMA-CG and NUMA-DG codes for the
RTB problem using 323 elements and N = 4 polynomials. The wallclock time refers to
the total simulation time.

16 64 256 1024 4096 16384 65536
10

0

10
1

10
2

10
3

10
4

10
5

Number of Processors

W
al

lc
lo

ck
 T

im
e

(s
)

CG
DG

(a) wallclock time

16 64 256 1024 4096 16384 65536
16

64

256

1024

4096

16384

65536

Number of Processors

S
pe

ed
up

CG
DG
Ideal

(b) speedup

Figure 10: Scaling study performed using the NUMA-CG and NUMA-DG codes for the
RTB problem using 323 elements and N = 8.

36

6. Discussion and Conclusion

6.1. Future Work

6.1.1. Microphysical Parameterizations

In conjunction with the Naval Research Laboratory-Monterey, we are in-
corporating microphysical parameterizations into NUMA. Preliminary exper-
iments using the Kessler scheme [22] have been conducted within a 2D, serial
implementation [12]. Since physical parameterizations operate on columns of
data independently of adjacent data, the problem is embarrassingly parallel
provided the domain is decomposed in the horizontal only such that all z
values reside on-processor. To facilitate scaling on hybrid shared-distributed
memory architectures (such as TACC’s Ranger), hierarchical domain de-
composition is desirable, whereby MPI communication based on the algo-
rithm developed in the present paper is utilized in the horizontal and either
OpenMP parallelization, appropriate for shared memory, or graphical pro-
cessor units (GPUs) are employed for fine-grained parallelism in the vertical.
For such problems where the domain decomposition is only performed in the
xy plane such that all z values are on-processor both the CG and DG methods
will always have a much larger computational volume versus communication
footprint that will allow both methods to scale perfectly for the maximum
number of processors accommodated by a 2D domain decomposition.

6.2. Conclusion

In this paper, we have developed a nonhydrostatic model of the atmo-
sphere (NUMA) based on both CG and DG discretizations in space and ex-
plicit discretization in time. We note that purely explicit time-discretization
is not feasible due to the stringent CFL restriction; therefore, we will present
the results of our implicit-explicit time-integrators in a future work. This
paper has subjected NUMA to a couple of limited-area simulations, includ-
ing orographic flow and buoyant convection problems. The results of these
test problems are in agreement with either previous simulations, analytical
results, or physical intuition.

The parallel performance study described in Sec. 5 suggests several direc-
tions for the future of EBG methods (in particular, DG methods). Firstly,
good scalability was exhibited for both the CG and DG codes for O (104)
cores, with near-linear strong scaling for the DG code beyond O (104). As
described in Secs. 4.4 and 4.5, we attribute these scalability results to a large

37

computational volume relative to communication volume and high data local-
ity, which yields a low-cache miss percentage. In particular, DG exhibits very
low communication volume and outstanding data locality, indicating that DG
will be able to achieve ideal scaling up to O(105) cores with no modifications.
Secondly, these experiments indicate that high order EBGs (e.g. N = 8 rel-
ative to N = 4) become more efficient at higher core counts. Hence, as we
move towards the exascale epoch in which core counts of O (105) and O (106)
are rapidly become available, these high order EBGs may become competi-
tive with their established low-order counterparts (finite element and finite
volume methods). For these reasons, high-order EBG methods are excellent
candidates for next-generation NWP models.

Acknowledgment

The authors acknowledge Shiva Gopalakrishnan for his assistance in an-
alyzing the bottlenecks of the MPI codes as well as running some of the
simulations. In addition we thank both Shiva Gopalakrishnan and Michal
Kopera for reading over the drafts of the paper. The authors also acknowl-
edge TeraGrid for providing resources on TACC’s Ranger Sun Constellation
cluster. We would also like to thank the people who run Ranger for their
assistance. This work was funded by ONR Grant PE-0602435N.

References

[1] N. Ahmad and J. Lindeman. A Godunov-type finite volume scheme
for meso- and micro-scale flows in three dimensions. Pure and Applied
Geophysics, 165(9):1929–1939, 2008.

[2] Texas Advanced Computing Center. Ranger user guide, 2012.
http://www.tacc.utexas.edu/user-services/user-guides/

ranger-user-guide.

[3] T. Davies, M. J. P. Cullen, A. J. Malcolm, M. H. Mawson, A. Staniforth,
A. A. White, and N. Wood. A new dynamical core for the Met Office’s
global and regional modelling of the atmosphere. Q. J. R. Meteorol.
Soc., 131:1759–1782, 205.

[4] J. R. Dea, F. X. Giraldo, and B. Neta. High-order non-reflecting bound-
ary conditions for the linearized 2-D Euler equations: No mean flow case
. Wave Motion, 46:210–220, 2009.

38

[5] T. J. DeLuca. Performance of hybrid eulerian-lagrangian semi-implicit
time-integrators for nonhydrostatic mesoscale atmospheric modeling.
Master’s thesis, Naval Postgraduate School, 2008.

[6] J. M. Dennis, J. Edwards, K. J. Evans, O. N. Guba, P. H. Lauritzen,
A. Mirin, A. St. Cyr, M. Taylor, and P.H. Worley. CAM-SE: A scalable
spectral element dynamical core for the Community Atmosphere Model.
Int. J. of High Perf. Comput. Appl., (In Press), 2011.

[7] J. M. Dennis, M. Levy, R. D. Nair, H. M. Tufo, and T. Voran. Towards
and efficient and scalable discontinuous Galerkin atmospheric model.
Proceedings of the 19th IEEE International Parallel and Distributed Pro-
cessing Symposium, pages 1–7, 2005.

[8] M. O. Deville, P. F. Fischer, and E. H. Mund. High-Order Methods for
Incompressible Fluid Flow. Cambridge University Press, 2002.

[9] M Fey. Multidimensional upwinding. Part I. The method of transport
for solving the Euler equations. J. Comp. Phys., 143(1):159–180, JUN
10 1998.

[10] P. F. Fischer and A. T. Patera. Parallel spectral element solution of the
Stokes problem. J. Comp. Phys., 92:380–421, 1991.

[11] Aimé Fournier, Mark A. Taylor, and Joseph J. Tribbia. The spectral
element atmosphere model (SEAM): High-resolution parallel computa-
tion and localized resolution of regional dynamics. Mon. Wea. Rev.,
132(3):726–748, 2004.

[12] S. Gabersek, F. X. Giraldo, and J. D. Doyle. Simple microphysics
experiments with a spectral element model. Mon. Wea. Rev. (in review)
, 2010.

[13] F.X. Giraldo. The Lagrange-Galerkin spectral element method on un-
structured quadrilateral grids. J. Comp. Phys., 147(1):114–146, NOV
20 1998.

[14] F.X. Giraldo and M. Restelli. A study of spectral element and discon-
tinuous Galerkin methods for the Navier–Stokes equations in nonhydro-
static mesoscale atmospheric modeling: Equation sets and test cases. J.
Comp. Phys., 227(8):3849–3877, April 2008.

39

[15] F.X. Giraldo, M. Restelli, and M. L äuter. Semi-implicit formulations
of the Navier-Stokes equations: Applications to non-hydrostatic atmo-
spheric modeling. SIAM J. Sci. Comp., 32:3394–3425, 2010.

[16] F.X. Giraldo and Thomas E. Rosmond. A scalable spectral element
Eulerian atmospheric model (SEE-AM) for NWP: Dynamical core tests.
Mon. Wea. Rev., 132(1):133–153, JAN 2004.

[17] L. Grinberg and G. E. Karniadakis. A new domain decomposition
method with overlapping patches for ultrascale simulations: Application
to biological flows . J. Comput. Phys., 229:5541–5563, 2010.

[18] R. L. Higdon. Radiation boundary condtions for dispersive waves . SIAM
J. Numer. Anal., 31(1):64–100, 1994.

[19] RM Hodur. The Naval Research Laboratory’s coupled
ocean/atmosphere mesoscale prediction system (COAMPS). Mon.
Wea. Rev., 125(7):1414–1430, JUL 1997.

[20] G. Houzeaux, M. Vázquez, R. Aubry, and J. M. Cela. A massively
parallel fractional step solver for incompressible flows. J. Comp. Phys.,
228:6316–6332, 2009.

[21] G. Karypis and V. Kuman. A fast and highly quality multilevel scheme
for partitioning irregular graphs. SIAM J. Sci. Comp., 20(1):359–392,
1998.

[22] E. Kessler. On the Distribution and Continuity of Water Substance in
Atmospheric Circulation. AMS, 1969.

[23] R. Klein, U. Achatz, D. Bresch, O. M. Knio, and P. K. Smolarkiewicz.
Regime of validity of soundproof atmospheric flow models. J. Atmos.
Sci., 67(10):3226–3237, 2010.

[24] J.B. Klemp, W.C. Skamarock, and J. Dudhia. Conservative split-explicit
time integration methods for the compressible nonhydrostatic equations.
Mon. Wea. Rev., 135(8):2897–2913, 2007.

[25] A Klockner, T. Warburton, J. Bridge, and J. S. Hesthaven. Nodal
discontinuous galerkin methods on graphics processors. J. Comp. Phys.,
228(21):7863–7882, 2009.

40

[26] Daniel Y. Le Roux. Dispersion relation analysis of the pNC1 − p1 finite-
element pair in shallow-water models. SIAM J. Sci. Comput., 27(2):394–
414, 2005.

[27] Joseph M. Lindquist, Beny Neta, and Francis X. Giraldo. A spectral el-
ement solution of the Klein-Gordon equation with high-order treatment
of time and non-reflecting boundary. Wave Motion, 47(5):289 – 298,
2010.

[28] R. D. Nair, H. W. Choi, and H. M. Tufo. Computational aspects of a
scalable high-order discontinuous Galerkin atmospheric dynamical core.
Computers and Fluids, 30:309–319, 2009.

[29] M.R. Norman, R. D. Nair, and F. H. M. Semazzi. A low communica-
tion and large time step explicit finite-volume solver for non-hydrostatic
atmospheric dynamics. J. Comp. Phys., 230:1567–1584, 2011.

[30] J.M. Prusa, P.K. Smolarkiewicz, and A.A. Wyszogrodzki. EULAG, a
computational model for multiscale flows. Comput. Fluids, 37:1193–
1207, 2008.

[31] M. Restelli and F. X. Giraldo. A conservative discontinuous galerkin
semi-implicit formulation for the navier-stokes equations in nonhydro-
static mesoscale modeling. SIAM J. Sci. Comp., 31:2231–2257, 2009.

[32] U. Schattler, G. Doms, and J. Steppeler. Requirements and problems in
parallel model development at DWD. Scientific Programming, 8(1):13–
22, 2000 2000.

[33] W. C. Skamarock, J. D. Doyle, P. Clark, and N. Wood. A standard
test set for nonhydrostatic dynamical cores of NWP models . AMS
NWP-WAF Conference Poster, page P2.17, 2004.

[34] R. B. Smith. Linear theory of stratified hydrostatic flow past an isolated
mountain. Tellus, 32:348–364, 1980.

[35] R. B. Smith. Linear theory of stratified flow past an isolated mountain
in isoteric coordinates. J. Atmos. Sci., 45(42):3889–3896, 1988.

[36] P. K. Smolarkiewicz and J. A. Pudykiewicz. A class of semi-Lagrangian
approximations for fluids. J. Atmos. Sci., 49(22):2082–2096, 1992.

41

[37] Raymond J. Spiteri and Steven J. Ruuth. A new class of optimal high-
order strong-stability-preserving time discretization methods. SIAM J.
Numer. Anal., 40(2):469–491, 2002.

[38] S. J. Thomas, J. P. Hacker, and P. K. Smolarkiewicz. Spectral pre-
conditioners for nonhydrostatic atmospheric models. Mon. Wea. Rev.,
131:2464–2478, 2003.

[39] J. Thuburn, Todd D. Ringler, William C. Skamarock, and Joseph B.
Klemp. Numerical representation of geostrophic modes on arbitrarily
structured c-grids. J. Comp. Phys., 228:8321–8335, 2009.

[40] Paul A. Ullrich, C. Jablonowski, and B. van Leer. High-order finite-
volume methods for the shallow-water equations on the sphere. J. Comp.
Phys., 229(17):6104–6134, 2010.

[41] L. C. Wilcox, G. Stadler, C. Burstedde, and O. Ghattas. A high-order
discontinuous Galerkin method for wave propagation through coupled
elastic-acoustic media. J. Comp. Phys., 229(24):9373–9396, 2010.

42

